
TechnoPark Corp.
470, 555 Bryant St,
Palo Alto, CA 94301
(860) 506 5536

eXtremely
Distributed
Software
Development

white paper

Some inventions explained in the document are protected by the
Patent Law of the United States, patent applications: 12/193,010,
12/264,370, 12/703,202, 12/840,306, and 12/943,022.

Page #2 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

In this document we introduce eXtremely Distributed
Software Development (XDSD) methodology and explain
how it reduces risks and improves quality.

Are We Getting Any Better?

Jeff Atwood said in his blog four years ago: “The history
of software development is a tremendous success. Just
look around you for evidence of that. But that success has
a long, dark shadow that we don’t talk about very much:
it’s littered with colossal failures. What’s particularly
disturbing is that the colossal failures keep recurring year
after year.” Sadly, since then we have not been getting
much better.

CHAOS (2010), the latest report by Standish Group
based on the analysis of 70,000 IT projects, shows that
the industry “failure rate” is over 68% and is not
decreasing. Cerpa and Verner (2009) gives a
representative summary of other recent studies, which
mostly agree that software quality is not improving, but
getting worse every year.

“Billions of dollars
are wasted each

year on bad
software.”

– Bob Charette

Charette (2005) says that while billions of dollars are
wasted each year on bad software, few IT projects truly
succeed.

Is there a bad pattern associated with projects falling
short? Do such cases look similar to each other? In this
white paper, we explore those questions and provide an

http://www.technoparkcorp.com
http://www.xdsd.org
http://www.codinghorror.com/blog/2006/05/the-long-dismal-history-of-software-project-failure.html

Page #3 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

example of a process that does work.

How It Happens

Imagine that you have a business process based on
paper documents, and you discover a strong market
demand to make them electronic and available over the
Internet.

So you find and hire a reputable software development
company with good references and the readiness to make
your project happen for a flat fee of $180 per hour. The
developer gives a precise and accurate estimate of the
project size, equal to 2585 hours, making the total project
budget equal to $465,300.

In a few months and after a number of payments made to
the developer, you see a demo version of the product.
You like it; however it misses a few important features
which are critical for the business. The developer
documents your suggestions and comes up with a new
budget. You approve it and wait for the next
demonstration, which happens in a few months.

After the 13th demonstration and four years of work, the
budget has increased and $3.1 million has been paid to
the developer. The system is still not finished and has not
been delivered to your end-users.

A reality check reveals that there is no system in place,

http://www.technoparkcorp.com

Page #4 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

but rather a large amount of messy documentation and
software components not compatible with each other. You
hire another vendor to get an independent oversight,
which reviews the existing artifacts and comes up with a
new project budget of $1.8 million, claiming that “it has to
be redone from scratch”. However, at this point you are
out of time and the budget has run out.

“...independent
oversight reveals

that there is no
system in place”

– audit report

Don’t be surprised if this story sounds familiar. This is not
fiction, but rather a summary of what William
C. Thompson (2003), New York City Controller,
documented in his audit of a project once outsourced by
the NYC Department of Health and Mental Hygiene to
IBM Corporation.

If IBM, a global corporation, makes such mistakes, how
can we avoid them? Is it just impossible due to the
“essential complexity” of software?

What History Says

Since the 1960s, when software engineering as an
independent profession was born, the success factors of
software projects concerned their sponsors. There were
two principles discovered in the industry and emphasized
by Brooks (1995). First, there is no “silver bullet”. Second,
if a “silver bullet” does exist, despite principle one, then
the solution is a discipline (also known as formal methods,
process, methodology, framework, best practices, etc.).

http://www.technoparkcorp.com

Page #5 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

1970 Waterfall

1980 V-Model

1982 CASE

1986 Spiral
1987 PMBOK, Cleanroom

1989 PRINCE2

1991 RAD, CMM

1993 MSF
1994 MIL-STD-498, OOAD
1995 UML, Chaos, Scrum

1997 FDD
1998 IEEE 12207
1999 XP, CI

2001 Agile, AOP
2002 PFE
2003 RUP, TDD, Lean, BDD
2004 DSM

2006 MDD

2009 Continuous Delivery
2010 XDSD

Source: Wikipedia.org

In most cases, a disciplined development process is more
important than effective algorithms, robust architecture,
talented engineers, team morale, or open
communications (Cooke-Davies, 2002; Emam and Koru,
2008; Sauser et al., 2009).

During the last 40 years, there were many such
methodologies introduced which were more or less
effective for their particular applications, from Waterfall in
1970 to Continuous Delivery in 2009.

However, despite all of these “proven” formal methods,
software project sponsors continue to suffer from cost
overrun, missed delivery, and incomplete features.

At the same time, being a software architect is one of the
highest paying and least stressful jobs in America,
according to CNN Money. Is this fair? How can we
leverage this reality to better benefit project sponsors?

There Is An Alternative

To find a solution, we just need to look around. While the
situation with commercial software projects is dramatic,
open-source industry experiences are quite the opposite.
Goldman and Gabriel (2005) presented how free open
source software (FOSS) products flourish with great
success in every business domain. Mozilla Firefox,
Apache HTTP Server, OpenOffice, MySQL, Linux, and

http://www.technoparkcorp.com
http://www.wikipedia.org
http://money.cnn.com/magazines/moneymag/bestjobs/2010/full_list/index.html

Page #6 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

Eclipse are just a few visible examples.

Open source teams tend to deliver quicker and with
higher quality. Their end-users experience fast and
motivated responses from product designers and
developers. OSS products effectively understand and
fulfill user requirements. Moreover, in most cases
exceptional products are being developed with extremely
small budgets.

“Recent case
studies provide

very dramatic
evidence that

commercial
quality can be

achieved/exceeded
by OSS projects.”

– V. Valloppillil
Microsoft, 1998

What are the success factors of open source projects,
which are absent in their commercial counterparts? There
are many of them, as shown by Gurbani et al. (2006)
and Herbsleb and Mockus (2003). The most significant
are motivated contributors, immediate delivery of a
product to end-users, and a bug-friendly development
environment. In a typical brick-and-mortar for-profit
organization, these factors rarely if ever exist.

During the last two years we have been developing and
experimenting with a methodology called eXtremely
Distributed Software Development, that applies the most
important components of OSS success to commercial
teams, without ruining the fundamentals of modern
business administration.

XDSD guarantees commercial projects what they usually
tend to lack, i.e. manageability, quality of code, high team
morale, and motivated user community. Next, we show
how XDSD was successfully implemented in a recent
commercial web project developed by our TechnoPark
Corp. team.

http://www.technoparkcorp.com
http://en.wikipedia.org/wiki/Halloween_Documents
http://www.xdsd.org
http://www.xdsd.org

Page #7 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

An Ideal XDSD Implementation

TechnoPark Corp. started this project with very little
information from the customer. There were no formal
requirements, just a USPTO Patent Application for a new
computer-mediated communications method.

We were contracted to architecture, design, and
implement a workable web2.0 system. Moreover, the top
priority non-functional requirements included interface
usability, source code maintainability, and extreme
scalability. We were constrained to only spend up to four
months and $50,000 to produce an extensively tested
product ready for a promotion campaign.

The customer planned to invest his own money into a
workable prototype and then raise venture capital for
marketing and business development.

Skills Ppl Location Price Hours
Web performance architect 1 USA, CA $130 20
PHP architect 1 USA, NY $80 50
PHP programmers 2 Poland e18 380
System analyst 1 Poland e15 80
Requirements reviewers 2 USA, NY $40 70
Manual testers 3 China $6 200
Code reviewers 3 Germany e40 40
Deployment engineer 1 Russia $20 20
Interface designer 1 Germany e40 40
Graphic artist 1 UK £50 40
Performance testers 2 Belarus $22 200
Total 19 1140

We found
and built a distributed team
of narrow-skilled engineers,
all of them working remotely
from different continents. This
is how we planned to spend our
budget among 19 people, and
the plan proved to be correct.

With every project participant,
we signed an individual contract obliging him/her to work
according to our rules, with certain awards and penalties.

http://www.technoparkcorp.com

Page #8 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

According to these rules, everybody got paid for verified
deliverables.

In order to keep our programmers, testers, management,
and the customer in-sync in regards to the product scope,
we documented requirements in a “wiki”. At the same
time, everybody was free to express their ideas and
concerns in online tickets.

TicketsTicketsTickets

Customer

Testers

System Analyst
WikiWikiWiki

Engineers

RQDQL

System
Under

Development

The system analyst summarized the information from
tickets and made changes to wiki pages. RQDQL, our
proprietary instrument, validated these requested
changes for consistency and integrity, and delivered to the
engineers in plain text and UML 2.0.

During the project course, we made over 600 changes to
the specification. Most of them were made in parallel with
programming and testing. The next graph shows the
dynamic of changes registration, week by week.

http://www.technoparkcorp.com
http://www.rqdql.com
http://www.omg.org/spec/UML/2.0/

Page #9 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

A
nu

m
be

ro
fd

ef
ec

ts
fo

un
d

Week number

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

During the project lifecycle,
the customer took an active
participation in discussions
about system functionality
with the system analyst,
programmers, and testers.

The first version of the system was delivered to the
customer and manual testers in nine days after the project
began. It was a workable software product, with very
limited functionality implemented. During the next 16
weeks, the engineers made over 8000 alterations
(check-ins), releasing new versions 10 to 20 times a day.
We used fazend.com, a hosted continuous integration
platform developed and maintained by our team.

...

Empowered with Puzzle
Driven Development paradigm,
the team constructed the software
as a puzzle mosaic. Every day
we made many visible and tangible

micro-steps, continuously approaching the final goal.

The deployment engineer was responsible for keeping the
source code consistent and robust from day one. At the
end of the project, the system included 29000 lines of
code extensively documented and covered by unit tests
for 85%.

The quality of product was planned and controlled by
means of pro-active bugs classification and enumeration,
as originally suggested by Myers (2004). We focused our

http://www.technoparkcorp.com
http://www.fazend.com
http://www.fazend.com/a/2010-03-PDD.html
http://www.fazend.com/a/2010-03-PDD.html

Page #10 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

testers on the forecasted amount of bugs we were going
to fix in the product.

According to the signed contracts the testers were paid
for the bugs found and documented, and they showed
outstanding results. There were 700 bugs registered of
different severities. 97% of them were fixed before the
end of the project, and the product was delivered on time
and on budget, with all specified features.

The Next Step

At TechnoPark Corp., we keep researching and
developing new processes and ways to develop software.
There are a number of academic and industry papers we
have produced during the last two years that emphasize
certain aspects of our achievements, mostly by
Bugayenko (2009a, 2010, 2009b).

We look forward to a new software development project
with you that uses the XDSD methodology. For more
information or to setup a meeting, please call us today
at: (239) 935 5429.

http://www.technoparkcorp.com

Page #11 of 11, www.technoparkcorp.com
470, 555 Bryant St, Palo Alto, CA 94301, (860) 506 5536
November 21, 2016

References

Brooks, F. P. (1995). The Mythical
Man-Month: Essays on Software.
Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd
edition.

Bugayenko, Y. (2009a). Quality of code
can be planned and controlled. In
Proceedings of the 1st International
Conference on Software Validation
and Verification (VALID), Portugal,
Porto.

Bugayenko, Y. (2009b). Quality of
process control in software projects. In
IWSM/Mensura 2009 International
Conference on Software
Measurement, Software Process and
Product Measurement, Amsterdam,
Netherlands.

Bugayenko, Y. (2010). How to Prevent
SVN Conflicts in Distributed Agile PHP
Projects. php|Architect, 9(8).

Cerpa, N. and Verner, J. M. (2009). Why
did your project fail? Communications
of the ACM, 52(12):130–134.

CHAOS (2010). CHAOS summary for
2010. Technical report, The Standish
Group International, Inc.

Charette, R. N. (2005). Why Software
Fails? We waste billions of dollars
each year on entirely preventable
mistakes. IEEE Spectrum, pages
42–49.

Cooke-Davies, T. (2002). The “real”
success factors on projects.
International Journal of Project
Management, 20(3):185–190.

Emam, K. E. and Koru, A. G. (2008). A
Replicated Survey of IT Software
Project Failures. IEEE Software,
25(5):84–90.

Goldman, R. and Gabriel, R. (2005).

Innovation Happens Elsewhere, First
Edition: Open Source as Business
Strategy. Morgan Kaufmann.

Gurbani, V. K., Garvert, A., and Herbsleb,
J. D. (2006). A case study of a
corporate open source development
model. In Proceedings of the 28th
International Conference on Software
Engineering, pages 472–481.

Herbsleb, J. and Mockus, A. (2003). An
empirical study of speed and
communication in globally distributed
software development. IEEE
Transactions on Software Engineering,
29(6):481–494.

Myers, G. J. (2004). The Art of Software
Testing. John Wiley & Sons, Inc., 2nd
edition.

Sauser, B. J., Reilly, R. R., and Shenhar,
A. J. (2009). Why projects fail? How
contingency theory can provide new
insights – A comparative analysis of
NASA’s Mars Climate Orbiter loss.
International Journal of Project
Management, 27(7):665–679.

William C. Thompson, J. (2003). Audit
Report on the Development and
Implementation of the Electronic
Death Registration System By the
Department of Health and Mental
Hygiene. Technical Report 7A03-073,
Office of the Controller, Bureau of
Financial Audit, New York, NY, USA.

http://www.technoparkcorp.com

	Are We Getting Any Better?
	How It Happens
	What History Says
	There Is An Alternative
	An Ideal XDSD Implementation
	The Next Step
	References

